
Journal of Applied Mechanics and Technical Physics, Vol. 35, No. 3, 1994 

L O W - S T R E S S  S T A T E  I N  A N  I N H O M O G E N E O U S  C O M P O U N D  

W E D G E  W I T H  M I X E D  B O U N D A R Y  C O N D I T I O N S  

A. G. Akopyan UDC 539.37 

A study has been made on the effects of inhomogeneity on the low-stress state at the edge of the contact surface in a 

compound wedge having power-law hardening under conditions of longitudinal shear and planar strain. It is assumed that one 
face of the wedge is free and the other is rigidly gripped. A solution has been given to an analogous treatment for a 

homogeneous compound wedge in [1]. The low-stress state has been examined for linearly elastic piecewise-homogeneous 

bodies in [2, 3]. In [4], low-stress states have been considered for an inhomogeneous compound wedge with free faces on 
longitudinal shear and planar strain. 

Here I derive the conditions for restricted stress at the tip of an inhomogeneous compound wedge. It is shown that the 
low-stress zones are related to the inhomogeneity in the mechanical parameters. 

1. Longitudinal Shear. Consider two long cylindrical bodies composed of inhomogeneous materials showing power- 
law hardening, which are joined together over a certain part of the side surfaces with complete adhesion. The angular point 

at ti~c edge of the contact surface is under the conditions of longitudinal shear. One face in the angular part of the body is 
rigidly gripped. We place the origin of a cylindrical coordinate system at the angular point in the contact surface, with the axis 

0 = 0 drawn along the contact surface and the z axis in the longitudinal direction (Fig. 1). 
In each region in the cross section, we have the equilibrium equation 

oh" I ~ l (1.1) 
+ - - - ~ -  + - r , z  = 0; 

0r  �9 r 

and the following relations between the stress, strain, and displacement components: 

a o a o a w  I a w  
% = 2 - -  = 2To y,~,  2~,,~ at' - ~ ~9" % y,~, roz = - -  2yo :  ( 1 . 2 )  

Here % and e o are the stress and strain intensities: 

cr ~ ~ + 2 aw 1 

We assume the following relationship between these intensities 

tm cr 0 = k%, k = k(0), 0-.<m~< 1, (1.3) 

in which k(0) characterizes the inhomogeneous deformation features of the materials and is to be determined by appropriate 
experiment. We take the degrees of hardening m as identical for the two materials, while the k(0) are different. 

We exclude the stress components from (1.1)-(1.3) to get a differential equation for w: 

__a r ~  0 _ l ~  + = 0. (1.4) ar ~ / r  o 
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Fig. 1 

We assume the following boundary conditions: 

r0 = 0 tbr O = c t ,  w =  0 for 0 = - f t .  (1.5) 

We assume that the displacement does not change sign and construct the solution in two regions: 0 < 0 _< ot and 

< 0 < 0, whose values are denoted by the subscripts i = 1, 2 correspondingly. 

We give the following form to the stress and displacement components in each region: 

~= = k , ~ . " - " - z / , ,  ~o.. = ~ p " - " - z l : ,  
= J 2 2 m - - I  w~ r/',, Z, = (/~2 +,i/. ) . (1.6) 

Here fi = fi( 0, X) and X are the unknown functions and a constant. 
We substitute the expressions for the displacements from (I .6) into (1.4) to get the differential equation 

(kf~g,)' + rlkf,~.,  = 0, r/ = 211 + (~ - l )m].  (1.7) 

The (1.5) conditions and the (1.6) representation give the boundary conditions 

/,(~) =/2(-/3) = o, (1.8) 

and also the linkage conditions at the contact surface 

ft  = /'2' f'tXt = Y/'2X2 for 0 = 0 (y = k z ( O ) / k x ( O ) ) .  (1.9) 

We introduce the new function $i(O, ~,) as 

to get a differential equation from (1.7)-(1.9): 

t/,~ = - 

f; = LW,, (1.10) 

( ~  + ~.2) (,/,~ + 2,,h:/, + s') 

~ + A~n (1.11) 

(2h/ = k'/k:i n = l / m ,  s 2 = 2Ql + n - 1)) 

with the boundary conditions 

and the condition at the contact surface 
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~xCa) = o, w2( -  ~)  = 0" 

~,u, = ~o,(o, ,~)). 

(1.12) 

(1.13) 
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If there is exponential inhomogeneity, i.e., 

Fig. 4 

k = kTeZ~7 e 

(ki* and h i are constants of the materials), then h i = const. 

Then the general  solution to (1.11) with A i = S 2 -- n2hi 2 > 0 is put as 

arctg ~ + G arctg ~- + 
A i A~ 

+ Q ln ' ~ ,1.2 = ~ -  O, V'~ + 

in which H i are arbitrary constants. The symbols here are 

B,G,. = (n - I) z,B.E = 2(n + l)n2h~ + (I -2)(n - I) 2 , 

B,Q, = 2(n - 1)nhi, B, = (n - 1) z + 4nZh~. 

We use the (1.12) boundary conditions to get from (1.15) for the various ranges in 0 that 

E l nh 1 
H 1 = a + ~ arctg 

H2 = _ f l  + E2 + G 2 7 +  Q21n-  $ "  

(1.14) 

(1.15) 

(1.16) 
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We take O = 0 in (1.15) to get 

= arctg ~ /  + G~ arctg T + Q~ln ,l 2 a ~ arctg ~ vA~} :,2 + , 

(1.17) 

E 2 ~u 2 + rth2~ ,'t -- a r c t g - ~  -- 2 22 
= --  a r c t g ~ /  + G2 -~ 2 + 

Then (1.13) and (1.17) constitute a system of three transcendental equations for ~1, tz2, and X, which ultimately 

determines ~, = ) , (a , /3 ,  3', nhi). 

The condition ~, = 1 in the space of the parameters  ~x, fl, 3', n, and h i defines a certain finite-stress surface separating 

the low-stress zone from the zone of high stress concentration. We put X = 1 to get from (1.13) and (1.17) that 

l , , ( v ~ ,  ~ + 1 ) ' - '  = ~ l , , ( v ~ :  ~ + 1 ) ' - ' ,  h ', < ,~, 

E I ( ,u I + nh! nhz l  Qt 2 + 2 n h l ~ l  + 

a = ~ karctg ,r l- a r c t g ~ !  + Glarctg/ t  1 + - - I n  at  . . . .  n vat: 2 n~ ~, + l) 

fl = ~ - a r c t g ~ /  + G 2 - arctg/L 2 - - -  v ~  j 2 /,2 2 + t 

(1.18) 

Here BiE i = 2(n + 1)n2hi 2, A i = n - n2hi 2, while the values of  G i, B i, and Qi remain as in (1.16). 

Figure 2 shows numerical  results f rom the transcendental system (1.18) in the ~/3 plane, where  we show the change 

in the low-stress zone (below the curves) in relation to the inhomogeneity in the mechanical  proper t ies  for a compound 

inhomogeneous wedge (3' # 1) and for a continuous one (3" = 1, h I = h2). The straight lines correspond to 3' = 1 and the 

curves to 3" = 2. 

A.  Single Inhomogeneous Wedge.  When  the wedge is made from a single inhomogeneous mater ia l ,  i .e . ,  for 3' = 1, 

h 1 = h 2 = h, we put ~1 = /~2  to satisfy (1.13) identically, while (1.17) gives 

a+fl= (~A. A ) n  E arctg..~_Ah +QIn2_. +G 2 v~ s" 
(1.19) 

We introduce the symbols  ~ + fl = 2o~,, v = c~,/Tr to derive a transcendental equation for X f rom (1.19): 

v + ~ arc tg  I n -  - - + = 0. (1.20) 
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We solve (1.20) numerically to define 7  ̀as a function of v, n, and h. Figure 3 shows a family of (7` - 1)/n curves for 

various n and h with u as independent variable. For the same degree of hardening and wedge angle, the edge may be in a state 

of low strain (7` > 1) or in a state of high stress concentration (X < 1) in accordance with the inhomogeneity in the mechanical 

parameters. 

If there is stress concentration at the vertex for 

cases, while there is none such with an angle less than 

and 3 show. 

B. Linearly Elastic Inhomogeneous Compound 

inhomogeneous material, we take m = 1 in (1.13) and 

a solid homogeneous wedge with vertex angle greater than 7r/2 in all 

w/2, then for a solid inhomogeneous wedge this is not so, as Figs. 2 

Wedge. When the compound wedge is made from linearly elastic 

(1.17) to get an equation for 7`: 

- ~ v ~  r -  h~ ctg 

,g (~) v~ - h 2, 

6a v ~  - h~) - h~ + ~,h= = o. 

(1.21) 

Further, we assume 7, = 1 to get the equation for the limiting low-stress curves: 

h, + 

- yVrl - h22 c t g 0 e l  - hi=) - h, + ) , h  a = O. 

(1.22) 

Here the condition [hi] < 1 is obeyed. The boundary curves defined by (1.22) are shown in Fig. 4 for various h i, where the 

straight lines correspond to y = I and the curves to 3' = 2. This shows that the low-stress zones for an inhomogeneous wedge 

may be enlarged or diminished by comparison with a homogeneous wedge in accordance with the degree of inhomogeneity. 

We get the corresponding formulas in [ 1, 3] from these results for homogeneous wedges with h i = 0. 

2. P lanar  St ra in .  We now consider the low-stress state for a compound wedge made of irthomogeneous incompressible 

materials showing power-law hardening, which is in a state of planar strain. Here we use the Fig. 1 scheme. We assume that 

the edge/9 = ~ is free from load, while the edge 0 = - /3 is rigidly gripped. 

The following differential equations of equilibrium apply in each wedge region: 

oa t ~ .  a - %  ~ I 0% 2 (2 .1 )  
- - - ~ ' + 7 - ~ - + - - - 0 ,  ~ + - - ~ - + -  = 0 ,  
a r  �9 a r  r r z,9 

Ou u 1 o~ 

~ , = - - ,  e o = - + 7 ~ ,  a r  r 

and the relations between the strain and displacement components are 

3v  v 1 8u  

- - - - + 7 ~ '  2y,~ = ar r 

and those between the stress and strain components are 

Here 

% % 
a , - a = 2  7 ( e , - e ) ,  a e - a = 2  7 ( e ~ - ~ ) ,  

1 
r~ = 2 ~o y~'  cr = -~ ( E  + %)" 

I V :  b % ~ ( , %), + r = - r,~, e o = V(e, - ee)' + 4~,.~ 

are the intensities of the stresses and strains, for which we assume (1.3) with identical m for the two materials but differing 

k(O). 
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We assume that the material is incompressible (e = 0) for each region, i.e., 

u 1 &~ 
au + _ + " 7 ~  = O. (2 .2 )  
Or r 

The quantities in the regions 0 < 0 _< a,  - f l  < 0 < 0 are denoted correspondingly by the subscripts i = 1, 2. 

A. Case X ;~ 1. The displacement pattern in each region that satisfies the incompressibility condition (2.2) is put as 

u , = r ; ' f ; ,  vi---(~1 + l)raf: w~-- O, 

in which fi = fi( 0, X) and X are the unknown eigenfunctions and eigenvalue. The stress components are 

cr = % + 42krO-um/:Z ,  , r ~, = krCa-l~"lJ': + (I - ;t2)Ll;c ,. (2.3) 

Here 

z, = {q[l': + (I -,~2)/,12 + 4,t2E2}--'. 

We substitute (2.3) into the equilibrium equations (2.1) to get 

r ( l -  i ) m  

% = (i - l),n {(k,t.t"~ + (1 - ,t').t',lx,)' + 4qk/~Z,},  2 ~ I 

and the differential-equation system 

{k,[f, + (1 - ~.2)/~1%,~, + k, 1 ~'~ [f'~ + (1 - ).z)/,lx, + 

w i 
+ 4 r / ( k / i z , )  = 0 ,  r/ = / l [ 1  + (2 - l )ml.  

The boundary conditions at the outer surfaces of the wedge are 

and at the contact surface 

/ ~ = / , =  o t'or o= - ~ ,  

F~ 4 t {kiLt" 1 + (1 - 2 2 ) / t 1 % 1 }  ' + r lk l f l z  I O, 
t t  

f l  + ( l  -- ~.2)f I = 0 for 0 = a ;  

(2.4) 

(2.5) 

if",  + ( l  - ; d ) f ,  l x ,  = r[.:"2 + ( l  - ,~)f21x~, y = k 2 ( O ) / k ~ ( O ) ,  

{kill"' ~ + (1 -22) / l l ; f i} '  + 4qk , / '~ t  = (2.6) 

= {~21/", + (1 -a2) .r l lx~} ' + 4 , z / , / ~ ,  

/, = i~, /',=i', for o=o. 

System (2.4) with (2.5) and (2.6) is a three-point problem on eigenvalues for fi(O, ),) and ~.. 

In a semi-inverse fashion, we assign various values to X = X. < l to derive numerically from (2.4)-(2.6) the relation 

between the parameters ~, 3, "/, and m and the materials inhomogeneity parameters for a given stress concentration. With X 

= )x. > 1, we determine the low-stress region in the space of these parameters. 

When the (1.10) substitution is made, the order of the (2.4) equation is reduced along with the boundary conditions 

(2.5) and (2.6). 
B. Case ), = 1.The finite-stress case requires special examination. The displacement pattern satisfying (2.2) is put as 

u, = rf[,  q = -2r / ,  + C rlnr,  w = O. 

Here fi = fi(0) and C i are arbitrary functions and constants. We represent the stress components as 

% = % + 4 ~ ,  x,, ~,~, =/c,(~; + c,)x, 

(z, = [',/4~, ~ + (,#; + c , y  r - l ,  ?,  =/,3 

and substitute into (2. i) to get 
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0 

o,, = e,  - n/nr- 2 f k , (<  + c,)z,ao 
0 

(E i and D i are arbi t rary  constants) with the differential equation 

[k,(W: + C,)Z,I' + 4~y,X,  = 0,. (2.7) 

We use the boundary conditions %1 = 0 at 0 = a and v 2 = 0 at 0 = --/3 together with the continuity conditions for 

Croi and v i at the to get 

C, = D = 0, E = 2 J" k~v/~tdO, f t (0)  = fz(0),  1"2(- fl) = 0, 

I 

o (2.8) 

OOl = 2 f k:o~,,~o, oo~ = 2 k,V'c,do + *,,V,~,~o . 
o 

The other boundary conditions give 

~0,,(a) = ~0~(-r 0, v l  = % ,  ~o;x, = n o ~ ,  for o = 0. (2.9) 

Certain transformations give from (2.7) that 

Cp (g, ,  + 4g.,) 
,,,v,; 2 + 4~ 4 z 

+ - <  = o,  (2.1o) 
~o~ 2 4~o~ + 

whence we introduce the new function r = 4 ' i ' /@ to get a first-order equation system 

(2.11) 

with the boundary conditions 

~,1(a) = 0, ~h( - ,a )  = ~0, 

~, , (~  4. ~,2).-1 = y~,2(vq-+ ~,~).-i for 0 = 0 .  
(2.12) 

Then (2.11) with (2.12) defines a finite-stress hypersurface that incorporates the inhomogeneity and the physical 

nonlinearity. 

The exponential  inhomogeneity in ( I .  14) has been used in a numerical solution to the (2.9) and (2.10) boundary-value 

problem, which gives/3  = /3(c~, n, 3`, hi), where n = I /m,  h i = k i ' /k  i = const, 3' = k2(0)/kl(0).  Equation (2.11) and (2.12) 

are inconvenient for numerical  solution. Figure 5 shows the numerical results, which imply that the low-stress zones alter 

considerably with h. The straight lines correspond to 3" = 1 and the curves to 3" = 2. Lines 1-5 correspond to the following 

parameters:  h i = - 1 . 3 6 ,  n = 2; h i = - 0 . 8 5 ,  n = 5; h i = - 1 ,  n = 3; h i = - 1 ,  n = 2; h i = 0, n = 2. The dashed parts 

of the lines correspond to those cases inhomogeneity when finite stresses may be absent at the tip of  the semi-infinite slot (oz 

+ /3 = 270. 
C.  Linear ly  Elastic Inhomogeneous Compound Wedge.  I f  a compound wedge is made  of  l inearly elastic inhomogeneous 

materials,  we use (2.11) and (2.12) with m = 1 and the exponential inhomogeneity (1.14) with Ihi I < 2 to get the transcen- 

dental equation 

4 t g ( a d 2 - ~  ) 

- -  ) ' ~ -  h~ c tg ( f l~ /4  - h2z) + yh 2 = 0. 

(2.13) 
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We take h i = 0 for a homogeneous compound linearly elastic wedge and get from (2.13) the corresponding equation 

of [3] if one takes the Poisson's ratios for the materials in it as 1/2. 
Figure 6 shows the traces of the surface defined by (2.13) in the c~/3 plane (the straight lines correspond to 3' = 1 and 

the curves to 3' = 2). 
There are always stress concentrations at the vertex for a solid homogeneous wedge with vertex angle greater than 7r/4, 

whereas there are none for an angle less than 7r/4, but that regularity is violated for a solid inhomogeneous wedge, as Figs. 

5 and 6 show. 
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